理论以及工具。
比如他此前在证明弱weyl_berry猜想的时候,就仅仅只是在巴拿赫空间对称结构理论以及具分形边界连通区域上的谱渐近这两领域做了一些创新,利用分形鼓对相联系的计数函数做了开口。
于是弱weyl_berry猜想的证明过程很快就被高尔斯教授所接受了。
而在证明weyl_berry猜想过程的时候,他在此前的方法上做了突破,通过狄利克雷域来对Ω的分形维数和分形测度的谱进行限定,再辅以域的扩张及将函数转换成子群并与中间域和合集建立起来联系。
数学界对于这一方法的接受就要慢很多了。
哪怕他的论文最终被六名顶级大老进行审核,其中有四名是菲尔兹奖得主,再加上他全程都在现场解答疑惑,也依旧用了很长的时间才被确认。
而时至今日,整个数学界能完全了解weyl_berry猜想的证明过程的人依旧不多。
哪怕他后面将这一方法推广到了天文学界,提升了它的重要性。
至于现在他手中的霍奇猜想的证明过程,那就更不用说了。
天知道数学界要多长的时间才会完整的接受这篇论文。
一年?三年?五年