已经太迟了。
如果这个发现可以早一年的时间,可能RNN会长期作为T办法的竞争对手,我们也有可能看到ChatRNN的出现。
“早期的T方法需要很多数据,各种参数比较难调整,需要的计算能力也很庞大。”孟繁岐即便根据后来成熟的许多方法做了一个改进的版本,T方法在早期仍旧比较麻烦。
“好在谷歌的数据和算力都不缺,而我也比较熟悉各种经典的参数设置。”孟繁岐先写了一个雏形版本的T方法,进行了一下测试。
“不过,受限于现在显卡的显存,模型没有办法做得很大,除非我专门再去开发DeepSpeed这样的高级并行方式。”
在多张卡上训练模型,可能是为了追求速度,也可能是因为一张卡上放不下了。
其中,数据并行是最简单的,也就是不同的卡都在做同样的事情,每张卡上都会存放一个模型。
只不过输入的数据不一样,不同的卡做完运算之后,再一起整合更新。
就像是所有人都拿了同样的刀切不同的菜,最后把切好的食材堆在一起。
可有的时候,一张卡上根本就放不下模型,这样的情况就比较麻烦了。因为一个人根本拿不动这把刀了,需要多