草稿纸上边写解题步骤,边给陈勇讲解。
停下笔后,陈舟看了一眼陈勇,他还盯着草稿纸在看。
这道题对于高中生来说,确实有些超纲了。
陈舟也不急,就这么边思考自己的课题,边等着陈勇。
过了一会,陈勇收回在草稿纸上的目光,扭头看向陈舟。
陈舟笑着问道:“都理解了?”
陈勇点了点头:“嗯,谢谢哥。”
陈舟:“不客气,接着做题吧。”
说完,陈舟也回到自己的课题上。
前面两个铺垫的定理已经搞定,下面就是关于Cauchy-Pompieu公式的证明了。
Cauchy-Pompieu公式的表述是:
【设Ω??+1)为有界区域,设f∈C1(Ω,(C)),且f∈H(Ω,α)(0<α<1),则对任意的n+1维链Γ,▔Γ??Ω,有f(z)=∫??Γf(ξ)??(w1+w2)-∫Γd[f(ξ)??(w1+w2)]。】
陈舟拿着笔,习惯性的在草稿纸上点了两下,然后开始证明。
【以z∈Ω为心,充分小的ε为半径,作小球Bε={ξ||ξ-z|<ε},则……】